Contrast-enhanced Semi-supervised Text Classification with Few Labels

Austin Cheng-Yun Tsai, Sheng-Ya Lin, Li-Chen Fu
Department of Computer Science and Information Engineering, National Taiwan University
{r08922086, r09944044, lichen}@ntu.edu.tw

2022. 9. 11 • ChongQing

- AAAI 2022

- 1.Introduction
- 2.Overview
- 3.Methods
- 4. Experiments

Introduction

- 1. When there is only a limited number of labeled data, complex neural networks often suffer from over-fitting
- 2. Semi-supervised approaches typically involve a sophisticated Neural Machine Translation (NMT) system, such approaches may be bothersome in real-world scenarios by requiring an additional NMT system
- 3.Traditional self-training does not perform sample selection, nor does it consider noises in the generated pseudo-labels during training

Overview

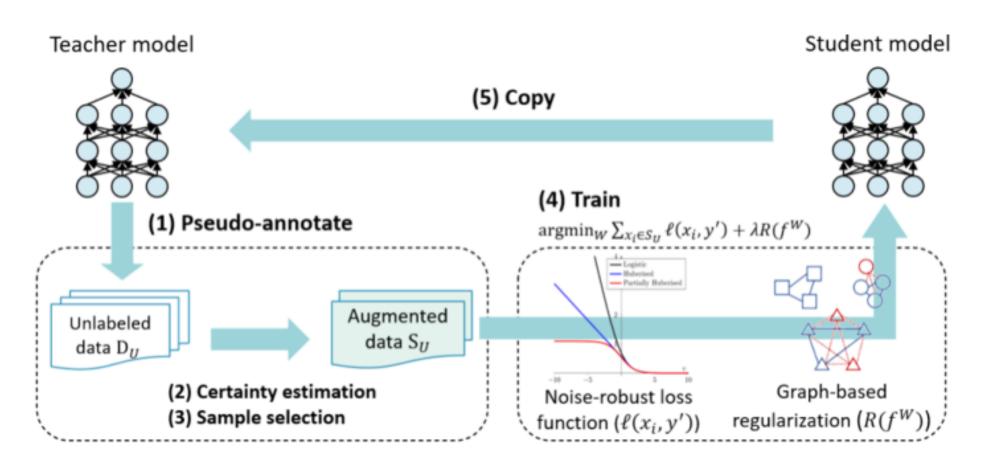


Figure 1: Framework overview.

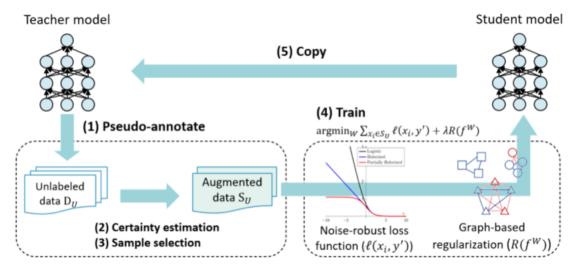


Figure 1: Framework overview.

$$\underset{W}{\operatorname{argmin}} \sum_{x_i \in D_L \cup D_U} \ell(x_i, y') + \lambda R(f^W) \tag{1}$$

where y' is the target label. If x_i is from D_U , y' is defined as the predicted label (pseudo-label). $\ell(\cdot, \cdot): \mathbb{Y} \times \mathbb{Y} \to \mathbb{R}$ is the loss function measuring the classification loss between the predictions and the labels, typically the cross-entropy loss. R is the regularization term that prevents the model from overly aggressively learning from data. λ is the hyperparameter controlling the impact of R.

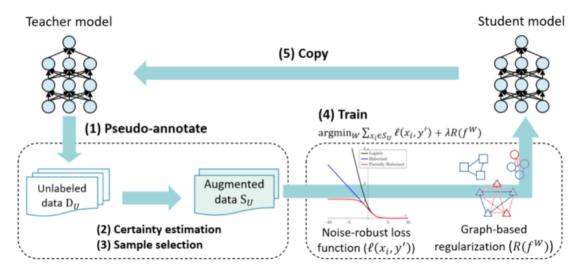


Figure 1: Framework overview.

$$\underset{W}{\operatorname{argmin}} \sum_{x_i \in S_U, S_U \subseteq D_U} \ell(x_i, \widetilde{y_i}) + \lambda R(W) \tag{2}$$

where W is the model parameters for the *student* model, and the hard pseudo-labels $\widetilde{y_i}$ are given by the *teacher* model W^* from the last iteration (W^* will be fixed in current iteration):

$$\widetilde{y}_i = \operatorname*{argmax}_c p(y = c | f^{W^*(x)})$$
 (3)

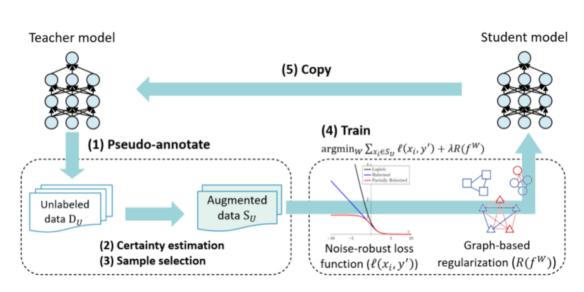


Figure 1: Framework overview.

Instead of having deterministic weights, BNN assumes a prior distribution over its model parameters. Considering the mapping function f^W for BNN, where W is the model parameters, the parameter optimization is achieved by finding the posterior distribution over model parameters $p(W|D_{train})$ on a training dataset D_{train} . During inference, for data instance x, the probability for class c is p(y) = c $c|x\rangle = \int_W p(y=c|f^W(x))p(W|D_{train})dW$. However, it is computationally intractable to calculate over all possible W and we have to find a surrogate distribution $q_{\theta}(W)$ in a tractable family of distributions to replace the true model posterior $p(W|D_{train})$. Gal and Ghahramani (2016) and Gal, Islam, and Ghahramani (2017) developed Monte-Carlo Dropout (MC Dropout) using BNN and showed that the probability for class c, p(y = c|x), can be approximated by considering $q_{\theta}(W)$ to be the dropout distribution (Srivastava et al. 2014), which is tractable, with T masked model weights $\{\widetilde{W}_t\}_{t=1}^T \sim q_{\theta}(W)$:

$$p(y = c|x, D_{train}) \approx \frac{1}{T} \sum_{t=1}^{T} p(y = c|f^{\widetilde{W}_t}(x))$$
 (4)

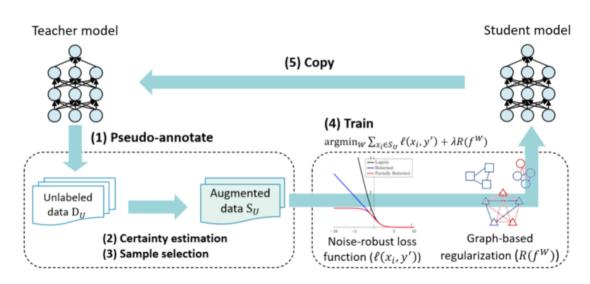


Figure 1: Framework overview.

where $\hat{p}_c^t = p(y = c | f^{\widetilde{W_t}(x)})$ is the estimated probability of class c given by the model parameters $: \widetilde{W_t} \sim q_{\theta}(W)$ in the t-th trial in the MC Dropout

Using entropy $\mathbb{H}(\cdot)$ to measure the level of information we have, we define the information gain \mathbb{B} to be the difference between the final entropy $\mathbb{H}(y|x,D_U)$ after seeing the whole unlabeled dataset D_U and the current entropy $\mathbb{H}(y|x,W)$ given the model parameters W in the current iteration. Formally, for data sample $x \in D_U$, the information gain \mathbb{B} with respect to its expected label is

$$\mathbb{B}(y, W|x, D_U) = \mathbb{H}(y|x, D_U) - \mathbb{E}_{p(W|D_U)}[\mathbb{H}(y|x, W)]$$
(5)

where $p(W|D_U)$ is the posterior distribution of the model parameter in current iteration. As Eq. (5) is computationally intractable, it can be approximated by MC Dropout (Gal, Islam, and Ghahramani 2017):

$$\widehat{\mathbb{B}}(y, W|x, D_U) = -\sum_c \left(\frac{1}{T} \sum_t \hat{p}_c^t\right) \log\left(\frac{1}{T} \sum_t \hat{p}_c^t\right) + \frac{1}{T} \sum_t \sum_c \hat{p}_c^t \log\left(\hat{p}_c^t\right)$$

$$(6)$$

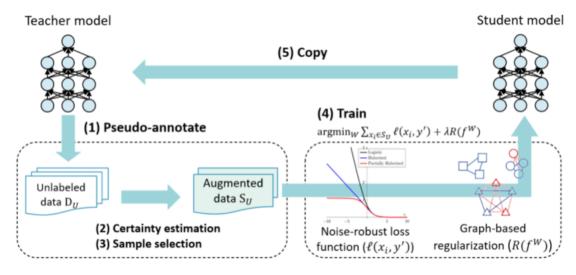


Figure 1: Framework overview.

$$s_{i} = \frac{1 - \hat{\mathbb{B}}(y_{i}, W | x_{i}, D_{U})}{\sum_{x_{i} \in D_{U}} \left[1 - \hat{\mathbb{B}}(y_{j}, W | x_{j}, D_{U})\right]}$$
(7)

,where $\sum_{x_j \in D_U} [1 - \hat{\mathbb{B}}(y_j, W | x_j, D_U)]$ is a normalizing factor

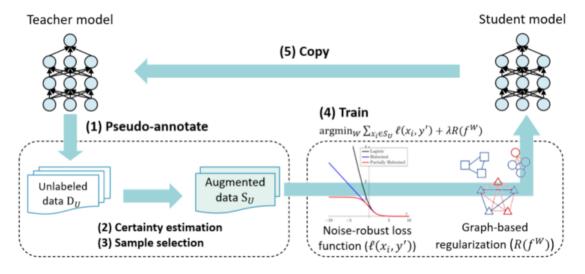


Figure 1: Framework overview.

$$V = \{i \mid x_i \in S_U\}$$

$$E = \{(i, j) \mid x_i, x_j \in S_U\}$$
(8)

and edge (i, j) has edge weight satisfying the following:

$$e_{ij} = \begin{cases} 1, & \text{if } \tilde{y}_i = \tilde{y}_j \\ 0, & \text{if } \tilde{y}_i \neq \tilde{y}_j \end{cases}$$
 (9)

where \widetilde{y}_i , \widetilde{y}_j are the hard pseudo-labels of x_i obtained by the teacher model W^* from the last iteration.

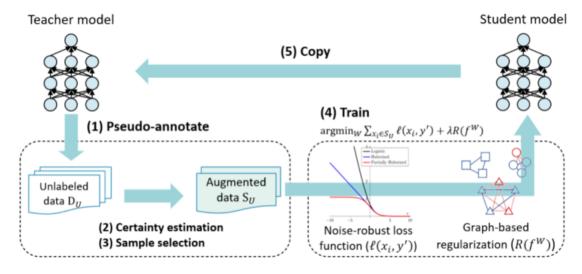


Figure 1: Framework overview.

Mathe-matically, given a similarity graph G and a pre-defined margin m between dissimilar features, we enhance the contrastthrough the regularization term R in the training objective:

$$R(f^{W}, G) = \sum_{(i,j)\in E, e_{ij}=1} ||h(x_i) - h(x_j)||_{2}^{2} + \sum_{(i,j)\in E, e_{ij}=0} \max(0, m - ||h(x_i) - h(x_j)||_{2})^{2}$$
(10)

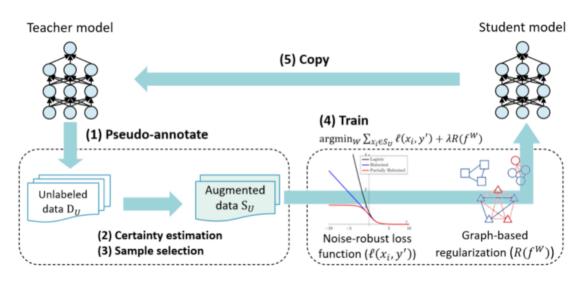


Figure 1: Framework overview.

$$\gamma(v_i) = 1 - \text{Var}(y = \tilde{y}_i | x_i) \approx 1 - \frac{1}{T} \sum_{t=1}^{T} p_t^2 + (\frac{1}{T} \sum_{t=1}^{T} p_t)^2$$
(11)

$$\gamma(e_{ij}) = \frac{\gamma(v_i) + \gamma(v_j)}{2} \tag{12}$$

where $p_t = p(y = \tilde{y}_i | f^{\widetilde{W_t}}(x_i)$ is the probability of \tilde{y}_i predicted by $f^{\widetilde{W_t}}$, where W_t is the model weight sampled in the t-th iteration in MC Dropout.

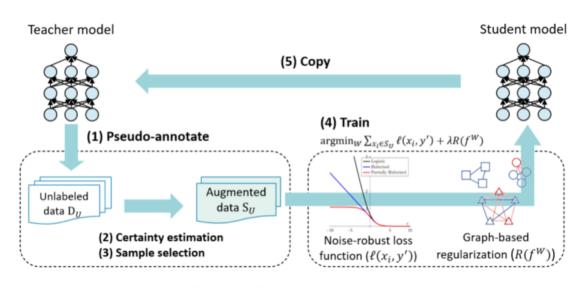


Figure 1: Framework overview.

To construct the reliable sub-graph G'(V', E'), we add all the nodes in G into G', i.e. V' = V. As for the edge set E', for each node v_i , we select the top k edges with the highest reliability γ from the positive set and from the negative set to form the reliable edge set E' (2k edges in total for each node), where k is a hyper-parameter, and the positive set and the negative set are defined as

- 1. positive set: $\{(i,j) \mid e_{ij} = 1, j = 1, 2, ..., |S_U|\}$
- 2. negative set: $\{(i,j) \mid e_{ij} = 0, j = 1, 2, ..., |S_U|\}$

In this way, we have a reliable graph with much fewer wrong edges, and we can still perform the same optimization on the resulting sub-graph G' as before:

$$R(f^{W}, G') = \sum_{(i,j)\in E', e_{ij}=1} ||h(x_i) - h(x_j)||_{2}^{2} + \sum_{(i,j)\in E', e_{ij}=0} \max(0, m - ||h(x_i) - h(x_j)||_{2})^{2}$$
(13)

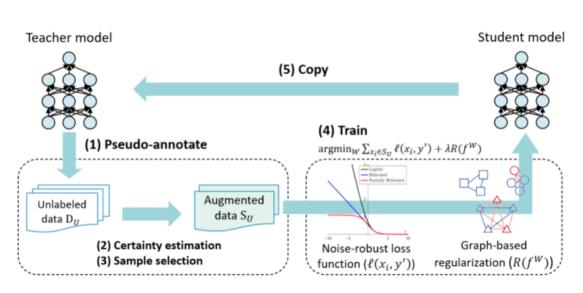


Figure 1: Framework overview.

Utilizing traditional cross-entropy loss to train pseudoannotated data is prone to error accumulation. Consider $l(f^W(x),y)=\varphi(p_W(x,y))$ to be the loss function, where $p_W(x,y)$ is the probability of the target class y predicted by the model W, and $\varphi(u)$ is the classification loss. For crossentropy loss, $l(f^W(x),y)=-\ln(p_W(x,y))$. Then, the gradient induced by the cross-entropy loss is

$$\frac{\partial l(f^W(x), y)}{\partial W} = -\frac{\partial \ln p_W(x, y)}{\partial W} = -\frac{1}{p_W(x, y)} \frac{\partial p_W(x, y)}{\partial W}$$
(14)

$$\widetilde{l} = \begin{cases}
-\tau p_W(x, y) - \varphi^*(-\tau), & \text{if } \varphi'(p_W(x, y)) \le -\tau \\
-\log p_W(x, y), & \text{otherwise}
\end{cases}$$
(15)

Integrating it with cross-entropy loss, the partially huberised cross-entropy loss (PHCE loss) is obtained:

$$\widetilde{l} = \begin{cases}
-\tau p_W(x, y) + \log \tau + 1, & \text{if } p_W(x, y) \le \frac{1}{\tau} \\
-\log p_W(x, y), & \text{otherwise}
\end{cases}$$
(16)

where τ is a hyper-parameter related to the degree of noise. τ is set larger if the data are essentially noise-free

Dataset	Full training	30 labeled training data per class				
	BERT	BERT	UDA	Standard ST	UST	CEST (Ours)
AG News	92.98	79.84	85.92	84.07	86.90	87.05
DBpedia	99.13	98.01	96.88	97.25	98.30	98.61
IMDB	91.26	80.90	89.30	83.81	84.06	90.20
Elec	96.48	85.07	89.64	89.50	89.97	92.26
SST-2	93.19	74.23	83.58	84.81	88.09	89.71
A	04.61	83.61	89.06	87.89	89.46	91.57
Average	94.61	(+0.00%)	(+5.45%)	(+4.28%)	(+5.85%)	(+7.96%)

Table 2: Performance (test accuracy(%)) comparison with baselines. The results are averaged for three runs, with each run taking 3-8 hours on an NVIDIA RTX3090. BERT on the second column means directly fine-tuning without using unlabeled data. Standard ST denotes standard self-training. We reproduced all baselines with PyTorch except that UDA's results are cited.

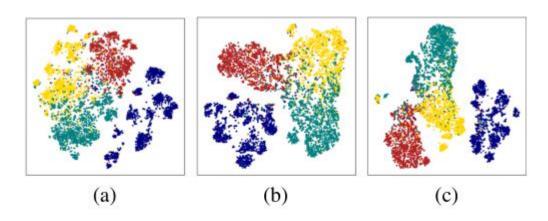


Figure 3: t-SNE visualization. (a) without similarity graph (b) similarity graph without considering reliability (c) with reliable similarity graph.

Figure 4: Test accuracy (%) over self-training iterations. The solid and the dotted lines shows the results of training with and without using the noise-robust loss (PHCE loss).

	AG News	IMDB	DBpedia	Elec	SST-2	Average
BERT (direct fine-tuning)	79.84	80.90	98.01	85.07	74.23	83.61
CEST	87.05	90.20	98.61	92.26	89.71	91.57
 noise-robust loss 	86.80	89.68	97.91	92.08	88.75	91.04
 reliable sub-graph 	86.56	88.37	97.44	91.96	87.95	90.46
- smoothness regularization	86.10	86.76	98.18	90.47	88.33	89.97
without sampling	84.07	83.81	97.25	89.51	84.81	87.89

Table 3: Ablation Study of performance (test accuracy (%)) over different design configurations.

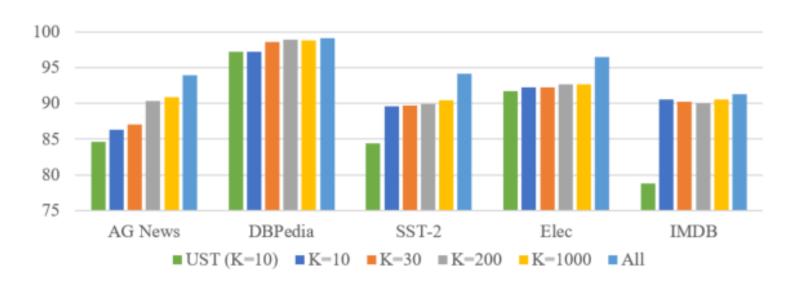


Figure 5: Test accuracy (%) under different number (K) of labeled training data per class.

Dataset	BERT	UST	CEST(Ours)
AG News	81.66	84.63	86.22
DBpedia	95.40	97.21	97.16
IMDB	75.40	78.83	90.65
Elec	76.69	91.76	92.21
SST-2	79.44	84.00	89.56
Avaraga	81.72	87.29	91.16
Average	(+0.00%)	(+5.57%)	(+9.44%)

Table 4: Test accuracy (%) with only ten labels per class.

Table 5: Performance comparison with non-BERT-based semi-supervised approaches. (Li and Ye 2018; Gururangan et al. 2019; Dai and Le 2015; Li and Sethy 2020) (RL: Reinforcement Learning, Adv.: Adversarial, Temp. Ens.: Temporal Ensemble, Layer Part.: Layer Partitioning)

Datasets	Model	# of labels	Acc.
IMDB	CEST (ours)	30	90.2
	Variational Pre-training	200	82.2
	RL + Adv. Training	100	82.1
	SeqSSL + Self-training	100	79.7
	Layer Part. + Temp. Ens.	100	75.8
	SeqSSL + Adv. Training	100	75.7
	Layer Part. + Π model	100	69.3
AG News	CEST (ours)	30	87.1
	Variational Pre-training	200	83.9
	SeqSSL + Self-training	100	78.5
	SeqSSL + Adv. Training	100	73.0
DBpedia	CEST (ours)	30	98.6
	RL + Adv. Training	100	98.5
	SeqSSL + Self-training	100	98.1
	SeqSSL + Adv. Training	100	96.1

Thanks!